Linear One-Class Support Tensor Machine

نویسندگان

  • Yanyan Chen
  • Ping Zhong
چکیده

One-class support vector machine is an important and efficient classifier which is used in the situation that only one class of data is available, and the other is too expensive or difficult to collect. It uses vector as input data, and trains a linear or nonlinear decision function in vector space. However, there is reason to consider data as tensor. Tensor representation can make use of the structural information present in the data, which cannot be handled by the traditional vector based classifier. The significant benefit of using tensor as input is the reduction of the number of decision parameters, which can avoid the overfitting problems and especially suitable for small sample and large dimension cases. In this paper we have proposed a tensor based one-class classification algorithm named linear one-class support tensor machine. It aims to find a hyperplane in tensor space with maximal margin from the origin that contains almost all the data of the target class. We demonstrate the performance of the new tensor based classifier on several publicly available datasets in comparison with the standard linear one-class support vector machine. The experimental results indicate the validity and advantage of our tensor based classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

R1STM: One-class Support Tensor Machine with Randomised Kernel

Identifying unusual or anomalous patterns in an underlying dataset is an important but challenging task in many applications. The focus of the unsupervised anomaly detection literature has mostly been on vectorised data. However, many applications are more naturally described using higher-order tensor representations. Approaches that vectorise tensorial data can destroy the structural informati...

متن کامل

A Fuzzy Support Tensor Machines based on Support Vector Data Description

Most of the traditional machine learning algorithms are based on the vector, but in tensor space, Tensor learning is helpful to overcome the over-fitting problem than vector learning. In the meanwhile, these algorithms based on tensor require a smaller set of decision variables as compared to those approaches based on vector. Support tensor machine (STM) is a prevalent machine learning approach...

متن کامل

Least Squares Fuzzy One-class Support Vector Machine for Imbalanced Data

Based on fuzzy one-class support vector machine (SVM) and least squares (LS) oneclass SVM, we propose an LS fuzzy one-class SVM to deal with the class imbalanced problem. The LS fuzzy one-class SVM applies a fuzzy membership to each sample and attempts to solve the modified primal problem. Hence, we just need to solve a system of linear equations as opposed solving the quadratic programming pro...

متن کامل

Least Squares One-class Support Vector Machine on Fuzzy Set

In this paper, we formulate a least squares version of the one-class support vector fuzzy machine (LS one-class SVFM) which is combined with the fuzzy set theory. The parameters in the proposed algorithm, such as weight vector and bias term, are fuzzy numbers. Our model only needs to solve a system of linear equations, instead of a complex quadratic programming problem (QPP) solved in one-class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016